AE 04: Wrangling flights

Application exercise
Important

This AE is due Friday, Sep 15 at 11:59pm.

To demonstrate data wrangling we will use flights, a tibble in the nycflights13 R package. It includes characteristics of all flights departing from New York City (JFK, LGA, EWR) in 2013.

Note: As we go through the AE, practicing thinking in steps, and reading your code as sentences

The data frame has over 336,000 observations (rows), 336776 observations to be exact, so we will not view the entire data frame. Instead we’ll use the commands below to help us explore the data. We have 19 in our data set.

glimpse(flights)
Rows: 336,776
Columns: 19
$ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
$ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
$ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
$ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
$ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
$ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
$ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
$ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
$ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
$ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
$ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
$ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
$ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
$ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
$ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
$ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
$ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…
names(flights)
 [1] "year"           "month"          "day"            "dep_time"      
 [5] "sched_dep_time" "dep_delay"      "arr_time"       "sched_arr_time"
 [9] "arr_delay"      "carrier"        "flight"         "tailnum"       
[13] "origin"         "dest"           "air_time"       "distance"      
[17] "hour"           "minute"         "time_hour"     
head(flights)
# A tibble: 6 × 19
   year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
1  2013     1     1      517            515         2      830            819
2  2013     1     1      533            529         4      850            830
3  2013     1     1      542            540         2      923            850
4  2013     1     1      544            545        -1     1004           1022
5  2013     1     1      554            600        -6      812            837
6  2013     1     1      554            558        -4      740            728
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

The head() function returns “A tibble: 6 x 19” and then the first six rows of the flights data.

Tibble vs. data frame

A tibble is an opinionated version of the R data frame. In other words, all tibbles are data frames, but not all data frames are tibbles!

There are many differences between a tibble and a data frame. The main one is…

  1. When you print a tibble, the first ten rows and all of the columns that fit on the screen will display, along with the type of each column.

Let’s look at the differences in the output when we type flights (tibble) in the console versus typing cars (data frame) in the console.

Data wrangling with dplyr

dplyr is the primary package in the tidyverse for data wrangling. Click here for the dplyr reference page. Click here for the dplyr cheatsheet.

Quick summary of key dplyr functions1:

Rows:

  • filter():chooses rows based on column values.
  • slice(): chooses rows based on location.
  • arrange(): changes the order of the rows
  • sample_n(): take a random subset of the rows

Columns:

  • select(): changes whether or not a column is included.
  • rename(): changes the name of columns.
  • mutate(): changes the values of columns and creates new columns.

Groups of rows:

  • summarise(): collapses a group into a single row.
  • count(): count unique values of one or more variables.
  • group_by(): perform calculations separately for each value of a variable

The pipe (reminder)

Before working with more data wrangling functions, let’s formally introduce the pipe. The pipe, |>, is an operator (a tool) for passing information from one process to another. We will use |> mainly in data pipelines to pass the output of the previous line of code as the first input of the next line of code.

When reading code “in English”, say “and then” whenever you see a pipe.

Activities

select()

  • Demo: Make a data frame that only contains the variables dep_delay and arr_delay.
flights |>
  select(dep_delay, arr_delay)
# A tibble: 336,776 × 2
   dep_delay arr_delay
       <dbl>     <dbl>
 1         2        11
 2         4        20
 3         2        33
 4        -1       -18
 5        -6       -25
 6        -4        12
 7        -5        19
 8        -3       -14
 9        -3        -8
10        -2         8
# ℹ 336,766 more rows
  • Demo: Make a data frame that keeps every variable except dep_delay. Call the new data frame new.data
new.data <- flights |> 
  select(-dep_delay)
  • In the console, type 1:10 and hit enter. What happened?

It provides the values 1 through 10!

  • Demo: Make a data frame that includes all variables between year through dep_delay (inclusive). These are all variables that provide information about the departure of each flight.
flights |> 
  select(year:dep_delay)
# A tibble: 336,776 × 6
    year month   day dep_time sched_dep_time dep_delay
   <int> <int> <int>    <int>          <int>     <dbl>
 1  2013     1     1      517            515         2
 2  2013     1     1      533            529         4
 3  2013     1     1      542            540         2
 4  2013     1     1      544            545        -1
 5  2013     1     1      554            600        -6
 6  2013     1     1      554            558        -4
 7  2013     1     1      555            600        -5
 8  2013     1     1      557            600        -3
 9  2013     1     1      557            600        -3
10  2013     1     1      558            600        -2
# ℹ 336,766 more rows
  • Demo: Use select and contains() to make a data frame that includes the variables associated with the arrival, i.e., contains the string "arr_" in the name. Reminder: Thinking about code as sentences can help make nesting functions more intuitive.
flights |>
  select(contains("arr_"))
# A tibble: 336,776 × 3
   arr_time sched_arr_time arr_delay
      <int>          <int>     <dbl>
 1      830            819        11
 2      850            830        20
 3      923            850        33
 4     1004           1022       -18
 5      812            837       -25
 6      740            728        12
 7      913            854        19
 8      709            723       -14
 9      838            846        -8
10      753            745         8
# ℹ 336,766 more rows
  • Why is arr_ in quotes?

slice()

  • Demo: Display the first five rows of the flights data frame.
flights |> 
  slice(1:5)
# A tibble: 5 × 19
   year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
1  2013     1     1      517            515         2      830            819
2  2013     1     1      533            529         4      850            830
3  2013     1     1      542            540         2      923            850
4  2013     1     1      544            545        -1     1004           1022
5  2013     1     1      554            600        -6      812            837
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
  • Demo: Display the last two rows of the flights data frame. Hint: n() produces the number of the last row in the data set.
flights |>
  slice((n()-1):n())
# A tibble: 2 × 19
   year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
1  2013     9    30       NA           1159        NA       NA           1344
2  2013     9    30       NA            840        NA       NA           1020
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
flights |>
  slice_tail(n = 2)
# A tibble: 2 × 19
   year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
  <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
1  2013     9    30       NA           1159        NA       NA           1344
2  2013     9    30       NA            840        NA       NA           1020
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>

arrange()

  • Demo: Let’s arrange the data by departure delay, so the flights with the shortest departure delays will be at the top of the data frame.
flights |>
  arrange(dep_delay)
# A tibble: 336,776 × 19
    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
 1  2013    12     7     2040           2123       -43       40           2352
 2  2013     2     3     2022           2055       -33     2240           2338
 3  2013    11    10     1408           1440       -32     1549           1559
 4  2013     1    11     1900           1930       -30     2233           2243
 5  2013     1    29     1703           1730       -27     1947           1957
 6  2013     8     9      729            755       -26     1002            955
 7  2013    10    23     1907           1932       -25     2143           2143
 8  2013     3    30     2030           2055       -25     2213           2250
 9  2013     3     2     1431           1455       -24     1601           1631
10  2013     5     5      934            958       -24     1225           1309
# ℹ 336,766 more rows
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#   hour <dbl>, minute <dbl>, time_hour <dttm>
  • Demo: Now let’s arrange the data by descending departure delay, so the flights with the longest departure delays will be at the top. Hint, run ?desc in the console.
flights |>
  arrange(desc(dep_delay)) |>
  select(year, dep_delay)
# A tibble: 336,776 × 2
    year dep_delay
   <int>     <dbl>
 1  2013      1301
 2  2013      1137
 3  2013      1126
 4  2013      1014
 5  2013      1005
 6  2013       960
 7  2013       911
 8  2013       899
 9  2013       898
10  2013       896
# ℹ 336,766 more rows

Footnotes

  1. From dplyr vignette↩︎