

Measuring the Madness

Pierre Quereuil, Krisztian Meszaros, Jaden Rodriguez, Srijan Oduru, Sivan Nemirof

Introduction to Topic and Motivation

Research Question: "How have college basketball seeds performed in March Madness relative to their expected outcomes between 1985 and 2019?"

Motivations:

Cameron Crazies!

 Most existing published research simply tries to predict the tournament results for a given year.

Large Scope

Data

- 2,205 different March Madness
 games from 1985-2019
- Added Ranking calculation
 - Based on # of wins in tournament and the seed of their opponents
- Used ranking to calculate differential
 - Differential = Seed (Ranking / 4)

- 1. UConn
- 2. SDSU
- 3. Miami (lost to 4 seed)
- 4. FAU (lost to 5 seed)

Highlights from EDA

Mean Differential For Each Seed Across Year

Seed

16

12

8

Δ

Linear Regression Models

$$\widehat{Ranking} = 12.23 + Seed imes 2.03$$

- Seed + 2.03 \Leftrightarrow Ranking + 1
- Ranking for 1-Seed: 14.26
- "High" Seeds Perform Well
 Compared to Average

 $\widehat{Differential} = -3.8 + Seed imes 0.5$

- Seed + 0.5 \Leftrightarrow Differential + 1
- Differential for 1-Seed: -3.3
- BUT "High" Seeds Underperform
 Compared to Expectation

Further Analysis

 Low seeds often overperform - upsets are more likely than you would think!

 Extreme variability: 5 and 3 seeds worst performers, not 1 seeds

Seed	MDifferential
16	6.0107143
15	3.9821429
14	2.9821429
12	2.2107143
13	2.1250000
11	1.4107143
10	0.5250000
9	0.2107143
7	-0.7607143
8	-1.0178571
1	-1.1035714
6	-1.5321429
2	-1.9321429
4	-2.1892857
3	-2.4178571
5	-2.5035714

Conclusion + Future Work

Conclusions

- Differential Linear Regression <u>lower seeds</u> more likely to overperform
- **Ranking Linear Model** <u>higher seeds</u> more likely to perform well
- Average Differential by Seed Table <u>3 and 5</u> seeds are worst performers

COLLEGE FOOTBALL PLAYOFF COLLEGE FOOTBALL COL

Future Work

- Extend analysis to other sports
- Use more statistical ranking system
- Explore factors responsible for winning

